
LATEX TikZposter

Branch-Price-and-Cut for Causal Discovery
James Cussens,Dept of Computer Science, University of Bristol

Branch-Price-and-Cut for Causal Discovery
James Cussens,Dept of Computer Science, University of Bristol

1. Casual discovery and optimisation

•There are pros and cons to doing score-based causal discovery (whatever the class of
candidate causal models) using a general-purpose constrained optimisation solver.

•Pro: The (highly optimised) software is already there.

•Pro: Can easily add constraints to rule out causal models inconsistent with domain
knowledge

•Pro: Exact (sometimes) and anytime (always) learning is possible.

•Con: Need to encode the causal discovery problem in a way the chosen solver understands

•Con: More complex than using a causal-discovery-specific algorithm.

2. Encoding DAGs as vectors

i

j

k

This DAG is this vector in R12:

xi←{} xi←{j} xi←{k} xi←{j,k} xj←{} xj←{i} xj←{k} xj←{i,k} xk←{} xk←{i} xk←{j} xk←{i,j}
0 1 0 0 1 0 0 0 0 0 0 1

•Why this encoding? Because many objective functions (‘scores’) for DAGs are sums of
local scores which are determined by the choice of parents for each vertex.

3. Integer linear programming model for DAG learning

Min
∑
i∈P

J⊆P\{i}

ci←Jxi←J

subject to:

(is a directed graph)
∑

J⊆P\{i}

xi←J = 1 i ∈ P (1)

(is acyclic)
∑
i∈C

∑
J⊆P\{i}
J∩C ̸=∅

xi←J ≤ |C| − 1 C ⊆ P, |C| ≥ 2 (2)

xi←J ∈ {0, 1}, i ∈ P, J ⊆ P \ {i}

•P are the random variables=vertices of the DAG.

• xi←J indicates that J is the parent set for child i.

• ci←J is the local cost (-1 × local score) when J is the parent set for child i.

4. Cutting and pricing to solve large linear programs

•The initial step for an ILP solver is to solve the linear relaxation of the ILP problem. In
our case, this linear relaxation is a linear program (LP) where xi←J ∈ {0, 1} is replaced
xi←J ∈ [0, 1].

•There are 2p − p − 1 (p = |P |) cluster constraints ruling out cycles so we add them
as cutting planes. We initially solve an LP (LP0) with no cluster constraints to get a
solution x∗0 and then add only those cluster constraints that x∗0 violates to get a new
LP (LP1), and then resolve (to get solution x∗1). We repeat until we get an LP (LPm)
whose solution x∗m satisfies all cluster constraints (even though only a fraction of them
are included in the problem).

•But each LP in the sequence LP0,LP1, . . . ,LPm has p2p−1 variables!

•For each LPι we only need to include those xi←J variables that have a non-zero value in
the solution x∗ι . (An ILP variable not included in the problem is implicitly set to 0.)

• So, once we have solved LPι with the ILP variables currently in the problem, we look for
additional ILP variables which, if included, would lead to a better (lower cost) solution
of LPι. If we can’t find any then LPι has been solved to optimality even though typically
a small fraction of ILP variables have been included. This is called pricing.

5. Pricing

•Associated with each LP solution x∗ι there are dual values for each constraint in LPι.

•Let λ∗i be the dual value for the constraint (1) for child i and let λ∗C be the dual value
for the constraint (2) for cluster C.

•A variable xi←J is worth adding to the problem if its reduced cost ci←J−λ∗i+
∑

C∈C,i∈C
C∩J ̸=∅

λ∗C

is negative.

•We search for new variables whose reduced cost is minimal:

MinimiseJ z = ci←J − λ∗i +
∑

C∈C,i∈C
C∩J ̸=∅

λ∗C

subject to z < 0

6. Pricing for ℓ0 penalised Gaussian DAGs

•For Gaussian DAGs, when the cost is negative log-likelihood with an ℓ0 penalty the
pricing problem becomes:

MinimiseJ z = n log σ2
i←J + Λ2|J | +

∑
C∈C,i∈C
C∩J ̸=∅

λ∗C

subject to z < λ∗i

•n is the size of the data. Λ2 is the ℓ0 penalty.

• σ2
i←J is the MSE (with MLE parameters) for the linear regression model where variables

J predict child i.

•Note this is doubly penalised regression: we have the normal ℓ0 penalty Λ2|J |, but also
a ‘cyclicity’ penalty

∑
C∈C,i∈C
C∩J ̸=∅

λ∗C

7. Optimisations

• If a candidate parent set J for child i has a subset J ′ with lower cost then it is NOT a
potentially optimal parent set (POP) and we can rule out J as a parent set for i:

∀i ∈ P, J ⊆ P \ {i} : ∃J ′ ⊊ J : ci←J ≥ ci←J ′ → xi←J = 0

•Non-POPs should not be priced-in, even if they have negative reduced costs.

•We can identify set intervals {J : J ⊆ J ⊆ J} that do not contain POPs and tell the
pricing algorithm not to search there.

•Another simpler optimisation is to find all POPs up to some small cardinality before
solving begins and tell the pricer to only look for bigger parent sets.

•We can also delay pricing so that we only price in new variables once no further cutting
planes can be found.

• In one 20 BN variable learning task delayed pricing reduced (exact) solving from 2206
seconds to 351 seconds.

8. Implementation and Performance

•GOBNILP has been extended to allow pricing to introduce new ILP variables during
solving.

•GOBNILP uses SCIP which (unlike e.g. Gurobi) has support for pricing.

•The pricing problem for the Gaussian log-likelihood ℓ0-penalised score is solved by SCIP
solving the non-linear optimisation problem (given above).

• If the optimal DAG is sparse then it is often possible to find all POPs before solving
starts. This is much faster than pricing them in during solving.

•However, when the optimal DAG is dense, pricing is necessary.

• In one example, produced after the paper was submitted (!), where the optimal DAG had
20 vertices with only one non-adjacency, GOBNILP-with-pricing found it (and proved it
optimal) in 140 seconds.

•But standard GOBNILP ran out of memory after 9 minutes.

9. Conclusions

More work is required to determine the usefulness and limitations of Branch-Price-and-Cut for Causal Discovery. It would be interesting to apply it to causal discovery beyond DAG learning
under causal sufficiency (e.g. to MAG learning).

