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The Alarm Bayesian network
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BNSL ILP formulation

Minimise
∑
i∈P

J⊆P\{i}

ci←Jxi←J

subject to: ∑
J⊆P\{i}

xi←J = 1 i ∈ P∑
i∈C

∑
J⊆P\{i}
J∩C,∅

xi←J ≤ |C | − 1 C ⊆ P, |C | ≥ 2

xi←J ∈ {0, 1}, i ∈ P, J ⊆ P \ {i}
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Pricing and cutting

I We have exponentially many decision variables which
motivates pricing.

I We have exponentially many constraints which motivates a
cutting plane approach.

I We could have only a quadratic number of acyclicity
constraints but we choose to use the exponentially many
cluster constraints since they are known to be facet-defining.

I In fact, any connected matroid defined on any subset of P
defines a facet.1

1Milan Studený. “How matroids occur in the context of learning Bayesian
network structure”. In: Proceedings of the 31st Conference on Uncertainty in
Artificial Intelligence (UAI 2015). Ed. by Marina Meila and Tom Heskes. AUAI
Press, 2015, pp. 832–841.
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BNSL linear relaxation of combinatorial relaxation

Minimise
∑
i∈P

J⊆P\{i}

ci←Jxi←J

subject to: ∑
J⊆P\{i}

xi←J = 1 i ∈ P∑
i∈C

∑
J⊆P\{i}
J∩C,∅

xi←J ≤ |C | − 1 C ⊆ P,C ∈ C

xi←J ∈ [0, 1], i ∈ P, J ⊆ P \ {i}

5 / 18



A generic pricing problem

I Let λ∗i and λ∗C (C ∈ C) be the dual values for the equations
and cluster constraints, respectively.

I One natural approach is to look for a new family variable xi←J

with minimal negative reduced cost for each i ∈ P:

MinimiseJ z = ci←J − λ
∗
i −

∑
C∈C,i∈C
C∩J,∅

λ∗C

subject to z < 0

I Note that since λ∗C ≤ 0, it is harder for big parents sets J to
have negative reduced cost, since they ‘make a cycle more
likely’.

6 / 18



Pricing for `0 penalised Gaussian BNs

MinimiseJ z = n logσ2
i←J + Λ2|J| −

∑
C∈C,i∈C
C∩J,∅

λ∗C

subject to z < λ∗i

I Learning a `0 penalised Gaussian BNs amounts to finding a
‘good’ `0 linear regression model for each i ∈ P without
allowing cycles.

I We add a cycle-penalty to the `0 penalty.
I σ2

i←J denotes minimal squared error when predicting i using
predictors J in a linear regression model. But this not a
convex problem since we have logσ2

i←J rather than σ2
i←J .
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Example of price-and-cut

1 5 7

23 4 6

LP |C| |V| Rounds Obj
1 0 14 7,0 -20954
2 20 35 4,4,5,4,3,1,0 -38006
3 40 50 4,5,3,2,1,0 -43158
4 60 52 2,0 -45301

I Using pricing we end up with 52 ‘family’ variables rather than
7 × 26 = 448.
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Branch-price-and-cut

I We branch not on family variables but arrow indicator
variables for a more balanced search tree.

I Instead of the constraint xi←j =
∑

J:j∈J xi←J ,
I we post two set partitioning constraints∑

J:j∈J xi←J + ¬xi←j = 1 and
∑

J:j<J xi←J + xi←j = 1.
I This allows SCIP to perform the desired propagations even

when new xi←J may be priced in.
I It is not too hard to alter the pricing algorithm to be consistent

with the set of obligatory and forbidden arrows in any node.
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Partial order variables

I To facilitate propagation we also create partial order variables
xifj .

I xi←j + ¬xifj ≤ 1
I xifj + xjfi ≤ 1
I xifj + xjfk − xifk ≤ 1.
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What is/isn’t in the LP

I Partial order variables and their constraints are not in the LP.
An adaptation of Marc Pfetsch’s LOP constraint handler is
used for them.

I The constraints
∑

J:j∈J xi←J + ¬xi←j = 1 are in the LP and so
have associated dual values λ∗i←j .

MinimiseJ z = ci←J −
∑
j∈J

λ∗i←j −
∑

C∈C,i∈C
C∩J,∅

λ∗C

subject to z < λ∗i
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Pricing via nonlinear optimisation

Minimise z = nxlogσ2 +
∑

j∈P\{i}

(Λ2 − λ∗i←j)yj −
∑
C∈C

λ∗CyC

subject to
∑

j∈P\{i}

γ2
j + c ≤ nxσ2

xlogσ2 = log xσ2

γ = S1/2β − S−1/2X>
−iXi

(βj , 1 − yj) : SOS-1 j ∈ P \ {i}

yC =
∨
j∈C

yj C ∈ C

z < λ∗i

xσ2 ∈ R+ xlogσ2 , γj , βj ∈ R yj , yC ∈ {0, 1}
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How to interleave pricing and cutting?

I In the standard approach to cut-and-price each LP is solved
to optimality (using pricing), and only once it is solved do we
look for cuts to get a better LP (i.e. a tighter linear relaxation).

I But why bother solving an LP to optimality if it will soon be
replaced by a better one? Also tight LPs make the pricing
problem easier.

I So I add the option to only start pricing once we can find no
more cuts.

I Thanks to Stephen Maher on ideas on how to ‘trick’ SCIP into
doing delayed pricing!

13 / 18



Creating initial parent sets

I A good idea to create, for each ‘child’ i all necessary parent
sets J up to some size k .

I Sometimes one can establish that no bigger parent sets are
needed for a particular child and so we can avoid futilely
attempting to price in new parent sets.

I Also useful to find the parent set that would be the best for
each child, if we did not have to worry about cycles.
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Does it work?

At time of writing my implementation is not entirely bug-free, but
usually gives the correct answers - eventually!

k NVars Solving Time Pricing time
1 321 478 475
2 316 463 459
3 283 151 150
4 282 80 77
5 - - -
6 276 2 0

Table: Solving times for PRICEBNLEARN on the small gaussian.test
dataset using BIC `0 penalised log squared error. NVars indicates the
number of IP variables in the problem at the point it is solved.
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With an easier objective . . .

k NVars Solving Time Pricing time
1 151 12.7 12.6
2 194 11.8 11.7
3 243 9.2 9.1
4 261 3.1 3.0
5 262 0.1 0
6 262 0.1 0

Table: Solving times for PRICEBNLEARN on the small gaussian.test
dataset using BIC `0 penalised squared error. NVars indicates the
number of IP variables in the problem at the point it is solved.
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The benefits of delayed pricing

On a bigger problem with pricing as normal:

k NVars Solving Time Pricing time
3 ≥ 3022 > 2457 > 2457
6 19386 2206 2192

With delayed pricing:

k NVars Solving Time Pricing time
3 3035 1326 1324
6 19386 351 335
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General points

I There are big opportunities for MIP methods in machine
learning.

I For example, pricing is needed for MIP learning of causal
models where latent variables are allowed.2.

I Naturally, we need a pricer that is fast (or infrequently called)
for this approach to be a practical option.

I The interplay between pricing, cutting and branching requires
careful consideration.

2Rui Chen, Sanjeeb Dash, and Tian Gao. “Integer Programming for Causal
Structure Learning in the Presence of Latent Variables”. In: Proceedings of the
38th International Conference on Machine Learning. Ed. by Marina Meila and
Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR,
18–24 Jul 2021, pp. 1550–1560. url:
https://proceedings.mlr.press/v139/chen21c.html.

18 / 18

https://proceedings.mlr.press/v139/chen21c.html

