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So many Bayesian network learning algorithms

Algorithms in the benchpress system
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https://github.com/felixleopoldo/benchpress


Agenda

1. Bayesian networks

2. Constraint-based learning of Bayesian networks

3. Causal models (estimating causal effects, adjustment sets)

4. Score-based learning of Bayesian networks

5. Evaluation
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The Alarm Bayesian network
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Bayesian networks define probability distributions

I Let’s define a Bayesian network (BN) with 3 binary variables:
X , Y and Z .

I We choose a structure which is a directed acyclic graph
(DAG):

X Y Z

I and parameters which are a bunch of conditional probability
distributions: P(X ), P(Y |X ), P(Z |Y ).

I Each variable gets a distribution conditional on its parents.

I The BN defines a (joint) probability distribution:

P(X = x ,Y = y ,Z = z) =

P(X = x)P(Y = y |X = x)P(Z = z |Y = y)
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Sampling data from a BN

I Sampling a datapoint from a BN X Y Z is easy using
ancestral sampling.

I Here we first sample from P(X ), suppose we get X = 1.

I Next we sample a value for Y from P(Y |X = 1), suppose we
get Y = 0.

I Finally sample a value for Z from P(Z |Y = 0).

I In general: sample values for parents before children. This is
always possible since we have a DAG.

I To generate a dataset with n datapoints, just repeat n times
(giving an iid sample).

I (I have a demo, perhaps later . . . )
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Bayesian network learning

I It’s just this: given a dataset, estimate the BN it was
generated from.

I So BN learning is a form of unsupervised learning.

I Sometimes we just want to guess the structure (DAG).

I But we can also estimate the parameters (typically after
estimating the DAG) and so get an estimate of the
data-generating probability distribution.

I OK, but why bother?
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What’s the point?

1. To estimate the data-generating distribution (density
estimation): learn structure and parameters from
observational data.

2. To estimate conditional independence relations between
variables (model selection): learn structure from observational
data.

3. To estimate a causal model (causal discovery): learn structure
(and typically parameters) from observational data and/or
experimental data.

We will focus on causal discovery since it’s the most interesting.
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Conditional independence

I Suppose P(X ,Z |Y ) = P(X |Y )P(Z |Y ) for some joint
distribution P over the random variables X , Y and Z .

I We say X and Z are independent conditional on Y (in
distribution P).

I Notation: (X ⊥ Z |Y )P or just X ⊥ Z |Y if it’s obvious which
P it is.

I Intuition: once we know the value of Y (whatever it might
be) then knowing the value of X does not help us predict the
value of Z (and vice-versa).

I In general, we deal with sets of random variables, e.g.
{A,B} ⊥ {C}|D,E or {B} ⊥ {C ,E}|∅.

I Every joint probability distribution P has a corresponding
(finite) list of conditional independence statements associated
with it.
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Bayesian networks and conditional independence

I A BN structure (i.e. a DAG) can be seen as a compact way of
encoding a set of conditional independence (CI) relations: the
set of CI relations obeyed by all distributions which can be
defined using that DAG.

I There are two methods for checking whether some CI relation
(e.g. X ⊥ Z |Y ) is implied by a DAG:

1. d-separation in the DAG
2. separation in moralised minimal ancestral graph
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The (inevitable) Monty Hall example

Prize

Choice

Revealed

I There is only one implied CI relation: Choice ⊥ Prize.

I In particular: Choice 6⊥ Prize|Revealed.

I This is the only DAG with variables Choice, Prize and
Revealed whose set of implied CI relations is
{Choice ⊥ Prize}.
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Constraint-based learning

I The connection between CI relations and DAGs leads to an
‘obvious’ method for DAG (i.e. BN structure) learning.

I Given some data on, say, variables X , Y and Z , do statistical
tests on the data (e.g. chi-squared) to estimate which CI
relations hold in the data-generating distribution.

I And then find a DAG which implies (only) the CI relations
that hold according to these statistical tests.
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A successful example of constraint based learning

G1 =

X

Y

Z

G1 is the only DAG which implies this set of CI relations: X ⊥ Y ,
X 6⊥ Z , Y 6⊥ Z , X 6⊥ Y |Z , X 6⊥ Z |Y , Y 6⊥ Z |X .

G2 =

X

Y

Z

There are P∗ for G2 where (X ⊥ Y )P∗ , but almost all distributions
P for G2 have (X 6⊥ Y )P . The assumption that the true
distribution is not like P∗ is known as faithfulness.
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Problems for constraint-based learning

1. These 3 DAGs: X → Y → Z , X ← Y → Z , X ← Y ← Z are
Markov equivalent.
I That means they encode the same set of conditional

independence relations, namely {X ⊥ Z |Y }.
I The 3 DAGs represent different causal models, but

observational data alone cannot pick out the right one.

2. Statistical tests, particularly with small datasets and/or large
conditioning sets, don’t always give the right answer. And the
answer depends on some choice of confidence value.

3. Doing the tests may be time-consuming.
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Constraint-based learning in practice

I Algorithms for constraint-based learning of BNs aim to do as
few tests as possible to narrow down the set of BNs consistent
with the test results.

I For example, the seminal PC algorithm first of all estimates
the undirected skeleton of the DAG and then later attempts
to orient the graph edges.

I There’s an edge between X and Y if and only if there is some
separating set S such that X ⊥ Y |S .
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Inferring latent variables

I A nice thing about constraint-based learning is that it makes it
possible to infer the existence of latent (i.e. hidden) variables.

G3 =

X1

X2 L X3

X4

I Suppose the true data-generating DAG were G3 but variable L
was latent, so we only had observed data on X1, X2, X3, X4.

I The CI relations on the Xi are X1 ⊥ X3,X1 ⊥ X4,X2 ⊥
X4,X1 ⊥ X3|X4,X2 ⊥ X4|X1,X1 ⊥ X4|X2,X1 ⊥ X4|X3.

I There is no DAG on the Xi consistent with these CI relations
so an algorithm like FCI (Fast Causal Inference) or RFCI
(Really Fast Causal Inference) could infer the existence of a
latent variable.
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Causal Bayesian Networks

I In this section I will shamelessly pilfer material associated with
the dagitty software for creating, drawing and analysing
causal DAGs.

I dagitty is not concerned with learning DAGs!

I In fact, in applications of causal DAGs people do not use
learning to get a DAG (Johannes Textor, Simons Institute
talk). See, for example, Ferguson et al.1

1Karl D Ferguson et al. “Evidence synthesis for constructing directed acyclic
graphs (ESC-DAGs): a novel and systematic method for building directed
acyclic graphs”. In: International Journal of Epidemiology 49.1 (July 2019),
pp. 322–329.
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http://www.dagitty.net


Causal DAGs in a nutshell

“In a nutshell, a DAG is a graphic model that depicts a set of
hypotheses about the causal process that generates a set of
variables of interest. An arrow X → Y is drawn if there is a direct
causal effect of X on Y . Intuitively, this means that the natural
process determining Y is directly influenced by the status of X ,
and that altering X via external intervention would also alter Y .”2

2Johannes Textor. Drawing and Analyzing Causal DAGs with DAGitty.
2020.
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Interventions and graph surgery

UX

UZ

UY

X

Z

Y

I X is ice cream sales

I Y is crime rates

I Z is temperature

I P(Y = y |X = x)

Example from Pearl et al3

3Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. Causal Inference in
Statistics: A Primer. Wiley, 2016.
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Interventions and graph surgery

UX

UZ

UY

X

Z

Y

I X is ice cream sales

I Y is crime rates

I Z is temperature

I P(Y = y |do(X = x))

Example from Pearl et al3

3Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. Causal Inference in
Statistics: A Primer. Wiley, 2016.
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Identifying causal effects

“A key question in Epidemiology (and many other empirical
sciences) is: how can we infer the causal effect of an exposure on
an outcome of interest from an observational study? . . . If the
assumptions encoded in a given diagram hold, then it is sometimes
possible to devise an identification strategy from that diagram, by
which it would be possible to devise an unbiased estimate of a
causal effect from observed data.” [ibid.]
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Identifying causal effects

smoking

carry matches cancer

“[Assuming the above is the true causal model], would we adjust
for smoking, e.g. by weighted averaging of separate effect
estimates for smokers and non-smokers or by including smoking
status as a covariate in a regression model, we would no longer find
a correlation between carrying matches and lung cancer.” [ibid]

21 / 32



Score-based learning of BNs

I In a Bayesian approach to learning BNs we have some prior
P(G ) over possible DAGs.4

I And for each DAG we have some prior over parameter values
P(θ|G ).

P(G |D) ∝ P(G )P(D|G ) = P(G )

∫
θ
P(D|θ,G )P(θ|G )dθ

I Just find arg maxG P(G |D), where D is the observed data.

I This is an example of score-based learning, where posterior
probability is the score.

I Choose P(θ|G ) so that P(D|G ) has a convenient closed-form.
Can choose a uniform prior.

4There is nothing particularly Bayesian about BNs. Some people,
particularly statisticians, prefer to call them directed graphical models or
recursive graphical models.
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Choices for score-based learning

I Which score?
I If Bayesian, which prior?
I If penalised likelihood, where we penalise for too many

edges=parameters (e.g. `0, `1), which penalty?

I How/whether to find a score-optimal BN?
I Finding a guaranteed optimal BN (‘exact’ learning) can be a

slow (or practically impossible) task5.
I Heuristic algorithms: how to get a reasonably high-scoring BN

reasonably quickly?

I If we have information additional to the data, how to use it?

5David M. Chickering, David Heckerman, and Christopher Meek.
“Large-Sample Learning of Bayesian Networks is NP-Hard”. In: Journal of
Machine Learning Research 20 (Oct. 2004), pp. 1287–1330.
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Strategies for exact learning

Use an existing solving strategy for discrete optimisation . . .

I Dynamic programming6

I A∗7

I Weighted MAX-SAT8

I Integer linear programming9

6Tomi Silander and Petri Myllymäki. “A Simple Approach for Finding the
Globally Optimal Bayesian Network Structure”. In: UAI. 2006.

7Changhe Yuan and Brandon Malone. “Learning Optimal Bayesian
Networks: A Shortest Path Perspective”. In: Journal of Artificial Intelligence
Research 48 (Oct. 2013), pp. 23–65.

8James Cussens. “Bayesian network learning by compiling to weighted
MAX-SAT”. In: UAI 2008.

9Tommi Jaakkola et al. “Learning Bayesian Network Structure using LP
Relaxations”. In: AISTATS 2010, James Cussens. “Bayesian network learning
with cutting planes”. In: UAI 2011.
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Strategies for heuristic learning

Use an existing solving strategy for discrete optimisation . . .

I Local search e.g. hill climbing

Do continuous optimisation instead

I Inspired by lasso and glasso

I Use a suitable (`0 or `1) penalty

I Zero values correspond to non-edges.

I Might have to round down small values to zero to get enough
sparsity.
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Unsupervised learning as multiple coupled supervised
learning

I Suppose we have to learn a BN with variables X1, . . .Xp.

I One option: view each Xi as a response variable and do, say
lasso (i.e. `1 ) regression, using all other variables as
predictors.

I Draw an edge from Xj to Xi iff Xj is chosen as a predictor for
Xi .

I Can use, say a deep learning approach,10 to predict each Xi

from the others.

I Problem: this will typically lead to a cyclic graph.

10Sébastien Lachapelle et al. “Gradient-Based Neural DAG Learning”. In:
ICLR 20.
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Smooth acyclicity constraint

From the NOTEARS paper11:

In order to make (3) amenable to black-box optimiza-
tion, we propose to replace the combinatorial acyclicity
constraint G (W ) ∈ D in (3) with a single smooth equality
constraint h(W ) = 0 . Ideally, we would like a function
h : Rd×d → R that satisfies the following desiderata:

1. h(W ) = 0 if and only if W is acyclic;
2. The values of h quantify the “DAG-ness” of the

graph;
3. h is smooth
4. h and its derivatives are easy to compute.

11Xun Zheng et al. “DAGs with NO TEARS: Continuous Optimization for
Structure Learning”. In: NeurIPS 2018.
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The need for empirical testing

I OK, so what actually works?

I Reading papers will not answer that question!

I Finding, installing and comparing all these algorithms is
potentially a nightmare.

I Fortunately, the snakemake-based benchpress system makes
this a whole lot easier. . .
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benchpress

I Main developer of benchpress12: Felix Rios (formerly at Basel,
now at KTH, Stockholm

I User writes config file (JSON format) which specifies:

1. How to (randomly) generate ‘true’ DAGs (can be fixed)
2. How to (randomly) parameterise the ‘true’ DAGs
3. How to generate data from the parameterised true DAGs
4. Which DAG learning algorithms to use (and with which

hyperparameter settings)
5. How to evaluate the learned DAGs.

I Learning algorithms typically run in a container using
singularity (no installation required!)

I Snakemake works out how to organise the various jobs.

I Uses as many cores as you have available.

12Felix L. Rios, Giusi Moffa, and Jack Kuipers. Benchpress: a scalable and
platform-independent workflow for benchmarking structure learning algorithms
for graphical models. arXiv: 2107.03863. 2021.
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Benchpress results (DAGs with many vertices)

Let’s have a look at that paper.
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Small discrete DAGs
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Small continuous DAGs
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