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Learning directed acyclic graphs (DAGs)
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» Motivation:

» Uncovering conditional independence relations

» Causal Discovery
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Encoding directed graphs as real vectors

» The key to the integer linear programming (ILP) approach to
learning DAGs is to view them as points in R".

» We do this via family variables.

» This digraph: i > K s this point in R?:
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Encoding directed graphs as real vectors

» The key to the integer linear programming (ILP) approach to
learning DAGs is to view them as points in R".

» We do this via family variables.

» This digraph: i > K s this point in R?:
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A linear objective

Many objective functions for DAG learning (e.g. BDe, BIC) are a
data-determined linear function of the family variables.

B § S A V) S A U Sl MR VY3
700.1 | -670.3 | -630.5 |-614.0

Je 3 iy ik} | ik}
902 [-403 [-30.1 |-42

ke | ke i} | k=) | ke {0}
207 |-50.8 |-409 |-90.3

Score is:
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A linear objective

Many objective functions for DAG learning (e.g. BDe, BIC) are a
data-determined linear function of the family variables.
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Score is: -670.3 - 90.2 - 90.3 = -850.8
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A linear objective

Many objective functions for DAG learning (e.g. BDe, BIC) are a
data-determined linear function of the family variables.
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1 0 0 0
k—{} | k< {i} | k< {j} | k< {i.j}
-20.7 -50.8 -40.9 -90.3

1 0 0 0

Score is: -700.1 -90.2 - 20.7 = -811.0
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ILP formulation for DAG learning
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Cluster constraints

These cluster constraints [5] enforce acyclicity:
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Here's an example where P = {1,2,3,4} and C = {1,2,3}:

X142 + X13 + X123 + X124 + X134 + X123 .4
+ X2 1+ X0 3 + X213 + X014 + X034 + X2-134

+ X301+ X302+ X312 + X314 + X3024 + X30124 <2

» Each cluster constraint is facet-defining.

> They are a special case of facet-defining inequalities
determined by connected matroids [6].
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Solving strategy

» The ILP formulation has exponentially many variables and
exponentially many constraints.

» Constraints are added as cutting planes.

» Variables are added by a pricing algorithm (unless the data
allows us to add in all not-fixed-at-zero variables at the start).

» Additional variables representing directed edges and ancestor
relations are added to allow propagations.

» Implemented in the GOBNILP system [3, 4] which uses the
SCIP library [1].
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Lessons learned

» Use the fastest LP solver you can.

» One needs to trade-off the time taken to find cuts (even
facet-defining ones) with the benefits of adding them.

» Most metrics measuring the success of DAG learning don’t
care about certificates of optimality—so adapt a suitable
solving emphasis.

» Pricing is harder than cutting since we need to (re-)inspect
the data.

> Carefully interleaving pricing and cutting brings benefits.
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Learning from data with latent variables
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Two optimal DAGs learned from 100,000 datapoints (L removed)
simulated from the graph above are:
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» The true latent variable DAG can be recovered as the
‘intersection’ of the two optimal no-latents DAGs.

» Only worked because we had lots of data and few variables.

> Extend to less ideal learning situations?
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Learning latent model directly

» Chen, Dash, and Gao [2] used an ILP approach to directly
learn latent variable models: ancestral acyclic directed mixed
graphs (ADMGs).

P> They generalise the approach presented here: instead of
(binary) family variables they have (binary) variables
representing districts.

» There are very many canidate districts and Chen, Dash, and
Gao do not use pricing, which limits the approach to fairly
small examples.

P Research on extending this approach is definitely worthwhile.
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