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Learning directed acyclic graphs (DAGs)
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▶ Motivation:
▶ Uncovering conditional independence relations
▶ Causal Discovery
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Encoding directed graphs as real vectors

▶ The key to the integer linear programming (ILP) approach to
learning DAGs is to view them as points in Rn.

▶ We do this via family variables.

▶ This digraph: i

j

k is this point in R12:

i ← {} i ← {j} i ← {k} i ← {j , k}
0 1 0 0

j ← {} j ← {i} j ← {k} j ← {i , k}
1 0 0 0

k ← {} k ← {i} k ← {j} k ← {i , j}
0 0 0 1
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A linear objective

Many objective functions for DAG learning (e.g. BDe, BIC) are a
data-determined linear function of the family variables.

i ← {} i ← {j} i ← {k} i ← {j , k}
-700.1 -670.3 -630.5 -614.0

j ← {} j ← {i} j ← {k} j ← {i , k}
-90.2 -40.3 -30.1 -4.2

k ← {} k ← {i} k ← {j} k ← {i , j}
-20.7 -50.8 -40.9 -90.3

Score is:
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A linear objective

Many objective functions for DAG learning (e.g. BDe, BIC) are a
data-determined linear function of the family variables.

i ← {} i ← {j} i ← {k} i ← {j , k}
-700.1 -670.3 -630.5 -614.0

1 0 0 0

j ← {} j ← {i} j ← {k} j ← {i , k}
-90.2 -40.3 -30.1 -4.2

1 0 0 0

k ← {} k ← {i} k ← {j} k ← {i , j}
-20.7 -50.8 -40.9 -90.3

1 0 0 0

Score is: -700.1 - 90.2 - 20.7 = -811.0
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ILP formulation for DAG learning

Minimise
∑
i∈P

J⊆P\{i}

ci←Jxi←J

subject to: ∑
J⊆P\{i}

xi←J = 1 i ∈ P

∑
i∈C

∑
J⊆P\{i}
J∩C ̸=∅

xi←J ≤ |C | − 1 C ⊆ P, |C | ≥ 2

xi←J ∈ {0, 1}, i ∈ P, J ⊆ P \ {i}

5 / 10



References

Cluster constraints

These cluster constraints [5] enforce acyclicity:∑
i∈C

∑
J⊆P\{i}
J∩C ̸=∅

xi←J ≤ |C | − 1 C ⊆ P, |C | ≥ 2

Here’s an example where P = {1, 2, 3, 4} and C = {1, 2, 3}:

x1←2 + x1←3 + x1←2,3 + x1←2,4 + x1←3,4 + x1←2,3,4

+ x2←1 + x2←3 + x2←1,3 + x2←1,4 + x2←3,4 + x2←1,3,4

+ x3←1 + x3←2 + x3←1,2 + x3←1,4 + x3←2,4 + x3←1,2,4 ≤ 2

▶ Each cluster constraint is facet-defining.

▶ They are a special case of facet-defining inequalities
determined by connected matroids [6].
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Solving strategy

▶ The ILP formulation has exponentially many variables and
exponentially many constraints.

▶ Constraints are added as cutting planes.

▶ Variables are added by a pricing algorithm (unless the data
allows us to add in all not-fixed-at-zero variables at the start).

▶ Additional variables representing directed edges and ancestor
relations are added to allow propagations.

▶ Implemented in the GOBNILP system [3, 4] which uses the
SCIP library [1].
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Lessons learned

▶ Use the fastest LP solver you can.

▶ One needs to trade-off the time taken to find cuts (even
facet-defining ones) with the benefits of adding them.

▶ Most metrics measuring the success of DAG learning don’t
care about certificates of optimality—so adapt a suitable
solving emphasis.

▶ Pricing is harder than cutting since we need to (re-)inspect
the data.

▶ Carefully interleaving pricing and cutting brings benefits.
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Learning from data with latent variables

X2
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Two optimal DAGs learned from 100,000 datapoints (L removed)
simulated from the graph above are:

X2

X1

X3

X4

X2

X1

X3

X4

▶ The true latent variable DAG can be recovered as the
‘intersection’ of the two optimal no-latents DAGs.

▶ Only worked because we had lots of data and few variables.

▶ Extend to less ideal learning situations?
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Learning latent model directly

▶ Chen, Dash, and Gao [2] used an ILP approach to directly
learn latent variable models: ancestral acyclic directed mixed
graphs (ADMGs).

▶ They generalise the approach presented here: instead of
(binary) family variables they have (binary) variables
representing districts.

▶ There are very many canidate districts and Chen, Dash, and
Gao do not use pricing, which limits the approach to fairly
small examples.

▶ Research on extending this approach is definitely worthwhile.
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